
AD-A270 613

Protocol Service Decomposition for
High-Performance Networking

Chris Maeda Brian N. Bershad
March 1993 DTIC

CMU-CS-93-131 q ELECTE 0
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

To appear in the 14th ACM Symposium on Operating Systems Principles. December 5-8, 1993.

h- Z.s bes :cp ov
or public rel•,I-e zo v.e

Sdistrib.,:oni•-~:.id

93-239741111 111111111 fIII Ill 111011 I
This research was sponsored in part by the Advanced Research Projects Agency, Information Science and

Technology Office, under the title "Research on Parallel Computing", ARPA Order No. 7330, issued by ARPA/C(MO
under Contract MDA972-90-C-0035, the Xerox Corporation, and Digital Equipment Corporation. Bershad was
partially supported by a National Science Foundation Presidential Young Investigator Award. Maeda was partially
supported by a National Science Foundation Graduate Fellowship. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Advanced Research Projects Agency, Xerox Corporation, Digital Equipment Corporation. the
National Science Foundation, or the U.S. Government.

• ' l II I I

Best
Available

Copy

Keywords: Operating Systems, Protocol architecture, Mach, Network communication, Measurements

Abstract

In this paper we describe a new approach to implementing network protocols that enables them to have high
performance and high flexibility, while retaining complete conformity to existing application programming
interfaces. The key insight behind our work is that an application's interface to the network is distinct and
separable from its interface to the operating system. We have separated these interfaces for two protocol
implementations, TCP/IP and UDP/Iv', running on the Mach 3.0 operating system and UNIX server.
Specifically, library code in the application's address space implements the network protocols and transfers
data to and from the network, while an operating system server manages the heavyweight abstractions
that applications use when manipulating the network through operations other than send and receive. On
DECstation 5000/200 systems connected by 10Mb/sec Ethernet, this approach to protocol decomposition
achieves TCP/IP throughput of 1088 KB/second, which is comparable to that of a high-quality in-kernel
TCP/IP implementation, and substantially better than a server-based one. Our approach achieves small-
packet UDP/IP round trip latencies cf 1.23 ms, again comparable to a kernel-based implementation and
more than twice as fast as a server-based one.

• , 7 ,
I>

1. Introduction

In this paper we describe a new approach for implementing network protocols that enables them to have high
performance and h-gh flexibility. The key insight behind our work is that an application's interface to the
network is distinct and separable from its interface to the operating system. By separating the interfaces,
we can provide a fast path between the application and the network while maintaining the semantics of
operating system abstractions specified by standard application programming interfaces. Specifically, code
in the application address space implements the network protocols and transfers data to and from the
network, while an operating system server implements the machinery required when applications manipulate
a network session through operations other than send and receive. By placing the critical paths of the protoct.
in the application's address space, we avoid protection boundary crossings, data copying, and unnecessary
software layers in the important common case of send and receive. We provide flexibility because the user-
level networking software may be developed, configured, and specialized independently from the rest of the
operating system.

We have implemented our protocol architecture in the context of the Mach 3.0 operating system [Accetta
et al. 86, a'. CMU's UNIX server [Golub et al. 9Uj on Ni•P R3000 [Kane 881 and Intel i486 [Intel 901
processors running on 10Mb/sec Ethernet-based networks. Our system includes a complete TCP/IP and
UDP/IP stack implemented as a code library linked with each application program, and a set of operating
system facilities that emulate completely the BSD socket programming interface [Stevens 901.

Our approach of separating the protocol implementation into two pieces, one fast that resides in the
application's address space providing network connectivity, and one complete that resides in an operating
system server providing full interface compatibility, has resulted in substantial performance improvements
relative to a server-based implementation. More importantly, our user-level protocol libraries achieve per-
formance (both throughput and latency) that is comparable to, and in some cases better than, well-tuned
kernel-based implementations.

The rest of this paper

In the next section we detail the motivation and goals for application-level protocols. In Section 3 we prcsent
an overview of our design. In Section 4 we describe the system's performance, and an application-specific
protocol optimization that demonstrates the flexibility of our approach. In Section 5 we discuss related
work. Finally, in Section 6 we present our conclusions.

2. Motivation and goals

Our work is motivated by the desire to have network protocol software execute at user-level with the same
or better performance than when it executes in the kernel. Protocol software is generally implemented as
part of an operating system kernel [Leffler et al. 89], or as part of a dedicated server process [Rashid &,
Robertson 81, Golub et al. 90]. The main advantage of a server-based protocol implementation is flexibility
because the protocol code is decoupled from the kernel [Mogul et al. 87], allowing it to be more easily
modified (Jacobson et al. 92, Clark et al. 91, Clark et al. 92] and optimized [Clark & Tennenhouse 90, Forin
et al. 91], especially on an application-specific basis [Felten 92].

Protocols implemented in user-level servers, although flexible, have tended towards worse performance
than when implemented in the kerneL In a server-based protocol, control and data cross twice as many
protection boundaries when travelling between the network and the application. In one case, the extra
overhead resulted in performance that was two to four times worse than an in-kernel implementation [Maeda
& Bershad 92).

Clearly, neither a server-based nor a kernel-based strategy is ideal because each demands a tradeoff be-

tween efficiency and flexibility. The remaining strategy, and the one described in this paper, is to implement
network protocols as a library linked into the address space of each application. This approach can retain
the performance advantages of an in-kernel implementation and the flexibility advantages of a user-level
implementation. Good performance is achieved because the number of boundary crossings on the send and
receive paths is the same as the in-kernel case. Flexibility is achieved because the application, not the
operating system, can define the behavior of the network protocol.

The difficulty with application level protocols

The key challenge with application-level protocols, which control the format of data on the wire, is their
integration with the rest of the operating system, which provides abstractions to manage process state, I/O
channels, and other machine resources. We address this challenge by identifying and providing a set of key
interfaces between the application, the operating system, and the network. The protocol library provides for
services such as rapid data movement between hosts. This interface must be efficient, but it does not need
to be particularly complex. The operating system provides for important abstractions such as the network
as a first-class I/O channel. This interface must be complete in that it supports all operations that may be
applied to a network connection layered beneath a file abstraction, but it does not need to be particularly
efficient.

2.1. Other goals

In addition to flexibility and good performance, we have the following goals in our design:

" Reuse of existing protocol code. Our interfaces allow the use of existing network protocol code as
protocol libraries. This allows us to leverage the protocol construction work of others (Jacobson
88, Hutchinson & Peterson 91], and to more easily compare the performance of a given protocol
implementation running in the kernel, in a protocol server, and in an application.

" Source-level compatibility with existing protocol clients. We are willing to recompile or relink existing
protocol clients against our new implementation, but we (as we expect most others) are unwilling to
modify these clients. Consequently, our operating system and protocol interface is syntacticaliy and
semantically compatible with existing interfaces.

" Security. A protocol implementation must not degrade the security of the network. Our design offers
the same level of network security as is found in the protocol implementation that it supplants.

" A portable architecture. We intend to use our protocol architecture on uniprocessors, shared memory
multiprocessors, and multicomputers in which processors share a high-speed dedicated mesh. The
application protocol library is structured as a component of a distributed system in which protocol
state is maintained by both the operating system server and the application.

While this work has been performed in the context of a specific microkernel-based operating system. it
is neither specific to it, nor to microkernel-based operating systems in general.

3. Design overview

In this section we present the design of our protocol architecture in the context of a reliable, byte-stream
protocol (TCP) and an unreliable datagram protocol (UDP) accessed through the BSD UNIX socket in-
terface. We first describe the responsibility and relationships of each major component. Next, we discuss
the system's behavior during the establishment of connections and the transfer of data. Throughout, we

2

Application Operating
System
Servar

Library (routing/ARP,
-Vtraryconnection setup,

(dat tr6s. . fork/select)

far to and from Network A.
the network) 'Interface "f

KZrnel
Figure 1: In our protocol architecture, critical-path functionality is implemented by libraries in the applica-
tion's address space. The operating system server manages shared protocol databases, handles connection
set up, and implements high-level ahstractions. The kernel exports a packet send and receive interface.

highlight techniques that we use to handle many of the complex cases that arise during application-level
protocol management.

3.1. The major components

Our application-level protocol architecture includes three software components as shown in Figure 1.

1. The operating system server is responsil le for network operations that have non-critical performance
requirements, such as connection establishment, teardown, and the handling of exceptional network
packets like ARP queries. In addition, the operating system maintains iong-lived, and shared, protocol
state such as routing information and TCP port namespaces. The operating system also provides
applications with network service in cases where application-level networking becomes difficult due to
a conflict between a library-based protocol and operating system semantics. Finally, the operating
system provides an interface that allows the application to integrate its own protocol management
with the operating system's file abstraction.

2. A multithreaded library within each application implements a protocol stack, in particular the send
and receive components.

3. The network interface provides a thin software layer on top of the raw network hardware. It is used
to both send and receive packets. As its performance limits that of applications, it is required to have
low latency and high bandwidth.

The operating system server and protocol libraries cooperate to manage network sessions. A network
session is specified by a 3-tuple consisting of a protocol, a local endpoint, and a remote endpoint. The
state of a network session consists of a set of protocol-specific state variables. For example, a TCP session
has state variables for the send and receive window sizes, the send and receive sequence numbers, and any
unacknowledged or undelivered data on the send and receive queues [Postel 811. UDP. as a connectionless
and stateless protocol, has no session state variables.

Sessions are created and terminated by the operating system. Once established, a network session is
migrated into the address space of the application for which it was created. The application then manages
the session until it executes an exceptional operation that makes application management difficult, or until
the session is terminated. For example, the BSD UNIX fork system call makes a copy (the "child") of
the process doing the fork (the "parent"), and the file descriptors in both the parent and child must refer
to the same I/O stream. These semantics are difficult to emulate if the session is maintained in either

3

the parent's or child's address space, instead of the operating system's.' In such cases, the active protocol
session migrates back from the application to the operating system, and all subsequent network operations
are routed through the server.

The protocol library relies on the kernel's network interface to send and receive packets. Applications
send packets directly to the network interface using a low-latency system call. For security reasons, packets
are received through the packet filter [Mogul. et al. 87, McCanne & Jacobson 93, Yuhara et al. 9.1]. The
operating system creates and installs a new packet filter for each network session.

3.2. Emulating an existing interface

We emulate the BSD UNIX socket interface through a simple proxy structure that distributes protocol state
across the operating system and the application's address space. A proxy is a small body of code that re•i'.s•
in the application's address space. It exports a procedure call interface that is identical to the socket svsteii
call interface otherwise exported by the operating system. An application's system call involving sockets is
first routed through its proxy where the call is either handled locally, forwarded untouched to the operating
system server, or translated into an alternate sequence of calls on the operating system server. Table I
lists the calls implemented by the proxy module in the library, and the corresponding calls exported by the
operating system server to assist the proxy in its implementation.

Proxy exports Server exports Action
socket proxy-socket Create a network session that is managed by the operating

system.
bind proxy-bind Set local address of session. UDP sessions migrate to tho

application.
connect proxy-connect Set remote address of session. UDP and TCI' sessic-n•

migrate to the application.
listen proxy-listen Open session passively. The operating system awaits new

connections.
accept proxy-accept Migrate passively opened session from the operating sN-

tem to the application when connection is establisbel.
all send and receive variants N/A Transfer data to or from the network.The operating syst'•,liI

is not involved.
fork proxy.xeturn Return session to operating system server. All sessinus

should be returned to the operating system before fork i:
called.

select proxy-status Notify operating system of change in proxy session stale.

Table 1: The proxy exports the standard socket interface, which it implements through a combination of
indirect calls onto the operating system, and direct calls onto the network. The operating system manages
session establishment and teardown, while the operating system handles session data transfer.

Creating network sessions

The socket call creates a file descriptor to represent a network session. In the case of a connection-oriented
protocol such as TCP, all three components of a session's 3-tuple (protocol, local endpoint, remote endpoint)
must be specified before the session is established. In the case of a connectionless protocol such as UDP, only

I If two address spaces were to comanage directly a network connection, then they could each comipt one another's protocol

state, violating the separation and protection semantics normally associated with address space boundaries.

"4

the protocol and local endpoint are needed to establish the session, as the remote endpoint is supplied with
each outgoing and incoming packet.2 For the socket call, the library performs a proxy-.socket call to the
operating system which returns a new file descriptor. Both the library and the operating system associate
the new descriptor with a data structure that represents an unconnected session for the specific protocol.

The bind system call specifies the local endpoint of a network session and is applied to a socket descriptor.
The library maps the call into a proxy-bind call, causing the operating system to associate the socket with
the specified address. Once the protocol and local endpoint have been specified for a UDP session with a
proxy-bind call, the session may be used for sending and receiving packets. Consequently, the operating
system returns the (null) network session state along with a local endpoint and a packet filter port. The
library binds its local socket to the endpoint returned by the operating system and awaits incoming packets
on the packet filter port. For TCP, only the local endpoint is returned when a proxy socket is bound because
the remote endpoint is not yet known.

Establishing connections

Connection establishment is managed entirely by the operating system. There are four reasons for this.
First, as with UDP, the creation of a new endpoint requires that the operating system construct and install
a new packet filter to receive data on that endpoint, so there is necessarily at least one interaction between
the operating system and the application. Second, it is necessary to interact with a local IP port manager
to ensure that the endpoint is uniquely named; the operating system is a convenient place to implement this
manager. Third, the operating system must track all connected sessions so that they are cleanly terminated
in the event that the address space holding the local endpoint itself terminates. Finally, unlike send and
receive, connection establishment is not a performance-critical operation. The additional IPC overhead
required to contact the operating system server is negligible compared to the latency of a multi-phase
network handshake.

Sessions in connection-oriented protocols such as TCP may be opened actively or passively. In a passive
open, the local protocol waits for connection requests on a local endpoint. In an active open, the local
protocol contacts a remote protocol and requests that a connection be established on a specified pair of
endpoints. Using the socket interface, connections are passively opened with the listen and accept system
calls, and actively opened with the connect call.

On the passive side, the protocol library maps the listen system call into a proxylisten call to
the operating system. The operating system is primed for incoming connection requests addressed to the
passively opened connection. When contacted by a remote peer, it negotiates the establishment of the
connection.

Once the connection is established, the operating system places it on a queue of passively opened sockets
until the local listener performs an accept operation. The library implements the accept system call with
a proxy-accept call to the operating system, which returns a new file descriptor to represent the passively
opened connection. The call also returns a local endpoint, a remote endpoint, the connection state variables,
and a packet filter port. The protocol library records the existence of the new connection, sets the initial
connection state to that returned by the operating system, and begins reading packets from the new packet
filter.

On the active side, the library transforms connect calls into proxy-connect calls to the operating sys-
tem. A proxy-connect causes the operating system to initiate connection establishment, and to then ret urn
the local and remote endpoints of the session, the protocol session state, and a packet filter port. As with a
passive open, the library then waits for packets to arrive on the packet filter port. If the socket is unbound
(i.e. has no local endpoint) at the time of the connect call, the socket is also given a local endpoint.

2 The BSD UDP (and our) implementation also permits "connection-oriented" sessions where the remote endpoint is implicit
to the session.

5

Sending and receiving data

The BSD socket interface has ten different ways to move data through a session (recv, recvfrom, recvmsg,
read, ready, and send, sendto, sendmsg, write, and writev). For sockets, these calls are implemented
entirely within the application's protocol library. Once a network session has been established, data can be
sent and received over the network without operating system intervention.

Outgoing unreliable data (UDP) is sent immediately and then discarded. Data is sent on a reliable
connection (TCP) by placing it on the socket send queue and calling the protocol's network output routine
which may or may not send a segment immediately, depending on the current state of the connection.
Reliable protocols keep the data on the send queue until it has been acknowledged by the remote endpoint.

The receive operations block until data is available on the socket receive queue, and then copy the data
out to a user buffer specified in the receive call. The socket interface, which has the receiver specify the
destination address of an incoming message, incurs an unnecessary copy at this point. A better integration
between the application and the protocol stack, described in Section 4.2, avoids this copy.

Terminating session state

Some protocols have sophisticated tear-down requirements. For example, properly closing a TCP connection
requires a four-way handshake (a two-way handshake in each direction) followed by a waiting period to ensure
that any segments delayed in the network have time to die [Postel 81]. For a clean shutdown, which occurs
when the application explicitly requests a close on session, we migrate the session state back to the operating
system and follow the shutdown protocol there. For an unexpected shutdown, for example, when a process
terminates in error, the connection can be left hanging in an undefined state. The operating system, though,
can detect the death of processes that are managing network connections, abort outstanding connections by
sending reset messages to remote peers, and delay the reopening of any aborted connections.

Cooperative interfaces

Some operations nn network sessions interact only with the operating system's scheduling and process
management interfaces, but do not move data. For example, the select call is used by applications to
check the status of a set of file descriptors. Because these descriptors may not all be managed by the
application (some may be actual files, for example) it is not possible to implement select entirely within
the application. Similarly, because some of the descriptors may be managed by the application, the call
cannot be implemented entirely within the operating system; the operating system has no direct way of
knowing when these sessions change status.

We bridge this "information gap" through a cooperative interface that is jointly implemented by the
application and the operating system. The library implements its side of select by examining the argument
file descriptor sets to determine which of the sockets managed by the application are ready. For each of
these sockets, the library records that the socket is being select'ed upon, and notifies the operating system
of the socket status. The library then calls through to the operating system's select system call. When
the application discovers data on one of the selected sockets, it signals the operating system of a status
change (proxy-status), forcing any relevant outstanding selects to return. In cases where all descriptors
are managed by the application, the operating system is not involved.

3.3. Caching protocol metastate

A good deal of a protocol implementation is responsible for managing state that is independent of any
particular session. We maintain this state in the operating system server to preserve its long-livedness, and

to protect it from damage by applications. For example, route table e,,tries and ARP mappings represent
long-term state that is used by all sessions, but owned by none. When sending data, application protocol code
must read this state when constructing outgoing packets. In the same way that the operating system caches
these entries from network queries, applications cache them to avoid communication with the operating
system on the packet send path. The operating system maintains callbacks into applications for these cached
entries and invalidates them as they expire or are updated.

3.4. Security considerations

The kernel's packet filter ensures that an application can only receive packets that are destined for it. WV..
however, do not prevent applications from sending arbitrary data packets over the network. W1. expect that
a packet limiting mechanism, if desired, could be implemented by checking each outgoing packet using a s,'r-
vice similar to the packet filter [Thekkath et al. 93]. Because network security is already quite fragile in the
presence of physically vulnerable connections [Garfinkel & Spafford 91], though, the basic problem of inter-
machine security is better addressed through the use of authentication mechanisms and encryption [Voydock

& Kent 831.

Application-level protocols can be used with session-level encryption software, provided that session keys
are confined to the application's address space. A small amount of additional operating system support is
required to ensure that session keys are cleared before a process' image is stored to disk (for example. as a
result of a core dump). Host-to-host, or metasession, encryption, will require an additional level of packet
addressing indirection on top of, and encryption below, the network send and receive interface. Specifically.
a process would send packets to a logical secure host, rather than an IP (or lower-level) address. The kernel's
network interface would be responsible for encrypting the packet, and routing it to the corresponding physical
host. Presently, we have no experience with a secure implementation of our protocols, though, so cannot
comment on their use.

4. Performance

In this section we discuss the performance of our application-level protocol architecture. which we have
implemented on top of the Mach 3.0 microkernel. We first describe a number of microbenchmarks that
reveal the throughput and latency of our implementation in the context, of several different user/kernel
network interfaces. We then demonstrate the benefit of a flexible user-level implementation by changing the
socket interface to eliminate data copies between the application and the protocol stack. Finally, we present
a detailed latency breakdown for TCP and UDP processing.

Platforms

We have run our experiments across 10 Mb/s Ethernet using DECstation 5000/200 workstations and Gate-
way personal computers. The DECstation uses a 25Mhz R3000 MIPS processor [Kane 88] with a Lance
Ethernet interface. The Gateway uses a 33 Mhz i486 processor [Intel 90] with a 3Corm 3(7503 Ethernet
interface.

On the DECstations, we compare the performance of our protocol library with DEC's Ultrix 4.2A,
the Mach 2.5 integrated kernel, and UX, CMU's single-server UNIX operating system. On the i486-based
machines, we compare the performance of our protocol library with the Mach 2.5 kernel, the 386BSD
kernel [Jolitz 92], the BNR2SS UNIX single-server [Dean 92], and CMU's UX.3 . In the comparison systems,
protocols are implemented in the server for the single-server based systems (UX and BNR2SS), and in

3 BNR2SS and 386BSD are not available for the DECstation. Ultrix 4.2A is not available for the Gateway.

the kernel otherwise (M-. -ll 2.5, Ultrix 4.2A, and 386BSD). Our protocol library, thle 38613SD kernel, and
BNR2SS all rely on protocol code derived from the Berkeley Networking Release Tape It (BN 112). Mach
2.5, Ultrix 4.2A, and UX use the 4.3BSD protocol implementation. Both implementations, though, are
comparable and of high-quality as each is capable of nearly saturating a 10MNb/sec Ethernet between a pair
of DECstation 5000/200s (Thekkatk et al. 934

We have compiled and r':n targe collect ion of net work- intensi ve applicat ions aga inst our protocol 1lilrarý,
including telniet, Itp, -u. . she X II libraries and clients [Gettys et al- 901. For this discussion, t hoogh,w,
focus on two microbcaicicmark programs: ttcp, a iniieiorv-to-rneiiiory throughput benchmiark for IT 'P that
transfers 16 NIB of data from one host to another, and protolat, a program that mea-sures protocol rounrd
trip latency for U DP and TCP. The programns are measured on a private network while the inachines are III
singlt-isvit mode.

Thogpt TCP UDP1
ThogptLatency (m-,) Laitiney Oniis

Receive~
BufIfer
Size Message size (bytes) Mussage size (bylts)

________________________KB/sec) (K<B) 1 l1t) 5112 1024 1460) 1 1001 5 1 2 101)2 147-1
DECstation 5000/200

Mach 2.5 In-Kernel 1070 24 1.41) 1.73 3.0.5 4.56 6.0 1 1.45 L.71 1. 1) ..56 5 7.
Ultrix 4.2A In-Kernel 496 16 1.52 1.89 31.50 4.78A 6.13 1. 52 1.A 1 3. 2 9 4..t;9 6, 1.1-
Mach 3.0+UX Server 7410 24 3.64 4.21 .5.9(0 7.8-1 9.7-3 3.61 4 01(55 7 99, 4 1ý I

Mach 3.0+U X Library-IPC 910 2 1 1 .69 2.09 3..13 5. 09 6.63 1.40(1 17 A1 08 1,7 1 6. 1 t
Mach 3.0+UX Lihrary-SIIM 1076 120 1.82 2. 2,9 3.bli 5.312 6.73 1.34 1.68 2.95 1.59 5 95

.Mach 3.0+UX Library-SlIM-IPF 1088 120 1.7T2 2.11 3.44 5.09 6.56 1.,2.3 1.57 2.S3 1.11 5) 7,1

Gateway 486
Mach 2.5 In-Kernel 4,57 8 2.08 2.69 5.45 8.78 12.0.5 1.8.3 2.11 5.19 A.5 1 111386BSD In-Kernel 320 8 2.71 3.64 6.21 NA NA 2.63 3. 19 6. 01 9.' 15 , -1.

Mach 3.O+UX Server 415 16 4.09 4.88 7.76 11.31) 1.1.29 3.96 4.67 7.,0; 11.6ý15oil i
Mach 3.0+BNR2SS Server 382 112 3.99 4.70 8.00 NNA NA 4.61 5.17 A.95 13.2.11 1 f I
Mach 3.0+UX Library-IPC 469 241 2.49 :3.1(0 5.8-1 9.25 141.09 2.12 -2.61'S5-311 147.1 11.61;

Mach 3.0+UX Librarv-SHMI 503 '21 2.39 3.07 5.79 9. 15 12.58 2. 02 2.59) 5.30 A. 6.1 11,621

Table 2: This table shows TCP throughput and latency, atid (IJP latency' for various s ' stvni contigiratwu.lý
and message sizes. Throughput for UTDP is not gi .ven as this is tied to wvindowing and acknowleilgeunwri
strategies as much xi to Iatenc *vI. The entries labeled NA are because 38613SF) and IJI25have a hug I Ila.
prevents thern fromn sending large TCP packets. The performiance of the libraryv-baed iiiipleilicietaitions I.,

comnparable to the native in-kernel implement at ions. Although thle iJ-186 process;or is comiparable inI perfor-
mance to the R3000, the Gatewa -y's low-performiance Ethernet card (transfers are done 8 bits at a ti11e)
severely limits its throughput. Both the library- and the server-based irnplemnentations on tile ;Gateiwi haive
lower latency than tile in-kernel version because of inefficienicis in thie way* that the 3,S6!?1SD kernel lharvllo.,
net work interrupts and scheduling. Thle libraryv-baseýd Implementat ions labeled IP(, S11.11, arid Uii.'
reflect runs using successively modified versions of thle kernel's., net work packet. filter interface,

4.1. Throughpuit aind latency

We have imple~mented several different versions oft hle user/kernel network interface. InI our baseline version.
the packet filter uses Mach IPC to deliver each incoming packet to thle protocol in a separate message-. 'lThe
second version uses a modified ,. cket filter that permits applications to receive multiple packets with a
single wakeup from the kernel. The third version uses a modified packet filter that eliminates, A copy Onl the
critical receive path by integrating thle packet filter with thle underlying device driver.

Table 2 shows throughput and round trip latency for TCP, and round trip latency for UDP uinder

8

different protocol configurations and software network interfaces. Latencies for both protocols are shown for
a range of packet sizes. We did not measure throughput for UDP, as it depends more on the windowing
and acknowledgement strategies than on the datagram transport machinery. For each system. we ran the
throughput benchmarks with the best possible receive buffer size for each implementation. We determined
the best size by running the throughput benchmarks with increasing buffer size until further increases did
not improve throughput. For the server and library-based protocols, the receive buffers are kept in virtual
memory and can be reallocated on demand for busy sessions.

For the first library-based configuration (Library-lPC), the network interface uses Mach's packet filter
and IPC mechanisms to dispatch incoming network packets to the appropriate address space. Packet trains
are not coalesced into contiguous messages, requiring that the protocol library collect and process an IP("
message for every incoming packet. Because each IPC crosses the user/kernel boundary and is on the critical
path of the receiver, we achieve only about 85% of the in-kernel throughput.

WVe have implemented an alternate packet filter mechanism (Library-S3lM) that transfers data in memory
shared between the kernel and the application. On receiving a packet, the packet filter transfers data into
the shared buffer, and uses a lightweight condition variable to signal a protocol library that new data has
arrived. The use of shared memory in this case does not reduce the number of packet copies, as an incoming
packet is first copied from the Ethernet driver to an internal kernel buffer before it is run through the packet
filter. Consequently. the change has little effect on single-packet latencies. The change is more effective for
throughput, since the scheduling overhead of packet delivery is amortized over multiple packets. The shared
memory interface delivers 1076 KB/sec on the DECstation configuration, which is an 18% improvement in
throughput relative to the IPC-based implementation, and slightly better than the in-kernel implementation.

We can eliminate the extra copy into the kernel buffer by more closely integrating the device driver and
the packet filter (Library-SHAM-IPF). A packet filter program for Internet protocols typically only exanmiIm,"
the packet header to determine the receiving endpoint. We can defer copying the rest of the pack(ot unltil
the final destination has been determined. By deferring, the packet filter can copy a packet's data directl.
from the device interface into the receiver's address space. The shared memory interface combined with lt l
integrated packet. filter delivers 1038 KB/sec on the DECstations, which is about 2% better than the in-kernel
protocol. This modification has a more dramatic effect on latency since the number of data copies on the
critical path is the same for the kernel-based and library-based protocol implementations. The integraie,
packet filter is device and machine-dependent, and we have not implemented it on the Gateway.

4.2. Changing the socket interface

A simple, but effective application-specific optimization can improve throughput and latency. As mientione'l
in Section 3.2, when an application program sends and receives data using the socket interface, it specifies
a buffer from which outgoing or into which incoming data should be placed (copied). By changing the send
and receive interface to allow the protocol and the application to share buffers, this copy can be elinmirmate.d

Table 3 compares the TCP and UDP round trip latencies for a kernel-based implementation of lhe c•n-
ventional socket interface with the library-based implementation using the modified initerfce. The modifilie,
interface outperforms the kernel-based implementation for large packets where copying costs become siug-
nificant. For TCP throughput, the change is less effective since bandwidth is generally controlled by the
speed with which the receiver can process and acknowledge segments. The copies eliminated by the interface
change occur after the segment has been processed by TCP, and are not on the critical path for throughput.
User-user throughput increases by 5% from 910 KB/sec to 959 KB/sec with the IPC-based packet filtr
interface. When used with the more efficient integrated packet filter, user-user throughput increases from
1088 KB/sec to 1099 KB/sec.

9

TCP UDP
Throughput Latency (ms) Latency (mis)

Receive
Buffer
Size Message size (bytes) Message size (bytes)

(KB/sec) (KB) 1 100 512 1024 1460 1 100 512 1024 1472
DECstation 5000/200

Mach 2.5 In-Kernel 1070 24 1.40 1. _- 3.05 4.56 6.04 1.45 1.74 3.05 4.56 5.88
Ultrix 4.2A In-Kernel 996 16 1.52 1.89 2 53 4.78 6.13 1.52 1.81 3.29 4.69 6.05

Mach 3.0+UX Library. NEWAPI-IPC 959 24 1.67 2.02 3.35 4.96 6.45 1.42 1.75 3.05 4.69 6,09
Mach 3.0+UX Library-NEWAPI-SHM 1083 120 1.70 2.07 3.33 4.94 6.38 1.34 1.66 2.93 4.54 5.95

Mach 3.0+UX Library-NEWAPI-SHM-IPF 1099 120 1.63 1.98 3.24 4,80 6.26 1.25 1.57 2.83 4.38 5.76

Table 3: This table shows the effect that a modified socket interface has on throughput and latency. The
library uses a new application programming interface (NEWAPI) that eliminates a redundant copy between
the protocol stack and the application.

4.3. Latency breakdown

On the DECstation 5000/200s, we have determined the time spent in the various protocol layers using a
high-resolution timer. Table 4 compares the average time spent in each layer of the TCP and UDP protocol
stacks for our library (SHM-IPF), the Mach 2.5 kernel, and CMU's UNIX server. Each column corresponds
to a single trial of 50000 round trips run in single-user mode on a private network. Since TCP sends extra
acknowledgement segments in addition to the data segments, the numbers for TCP only approximate the
critical path latency.

Send path

The first four lines define the send path. The first line, Entry/copyin, is the time required to enter the
socket layer code and convert the send buffer into a linked list of mbuf data structures (the internal unit of
memory allocation for the protocols). Entry is a procedure call for the library-based protocol, a trap for
the kernel-based protocol, and a trap followed by an RPC for the server-based protocol. For the library
with TCP, and the kernel for either TCP or UDP, the send buffer must be copied into an mbuf. For the

library-based UDP implementation, the user data can be referenced instead of copied. For the server with
both protocols, copyin requires sending an IPC message to the operating system server which then executes
the socket layer code that constructs the mbuf chain. This component is large because the data is copied
four times as part of an RPC: from the user buffer to the IPC message, from the IPC message into the
kernel, from the kernel into an IPC message buffer in the protocol server's address space, and again from
the IPC message buffer to the mbuf chain.

The remaining three components on the send path are for the actual protocol stack. The top laver
constructs the protocol header and checksum (header and data). The IP layer constructs the IP header and
determines the route to the destination. The Ethernet layer maps the destination IP address to an Et hernet
address, constructs the Ethernet header, and transmits the packet over the network.

The UDP and Ethernet layers have different latencies in each implementation. The ether-output coll-
ponent is larger in the library-based and server-based implementations because the protocol code traps into
the kernel and copies the packet from user space into a wired kernel buffer before copying it to device niein-
ory. In contrast, the in-kernel version copies outgoing data directly from the mbuf chain (which is already
wired) to the device.

The tcp-output and udp-output components are faster in the library than in the server. This discrepancy

10

Layer TCIP UDP
Library Kernel Server Library Kernel Server

1 1460 1 1460 1 1460 1 1472 1 1472 1 1472

Send Path
entry/copyin 19 203 *50 *153 *254 *579 6 7 *65 *104 *293 *628

tcp,udp-output 82 328 65 307 224 447 18 239 70' 273 229 398
ip-output 26 26 24 20 31 25 17 18 22 25 24 27

ether-output *98 *274 75 105 *166 *331 *105 *280 74 163 *188 *367
Send Path Total 225 831 214 .85 675 1382 146 544 231 565 734 1420

Receive Path
device intr/read 42 43 77 469 101 496 39 40 74 481 99 497

netisr/packet filter 82 95 79 73 53 52 58 70 83 84 76 61
kernel copyout *123 *53.1 0 0 *113 *148 *107 *517 0 0 *124 *207

abuf/queue 22 21 0 0 79 58 20 20 0 0 68 64
ipintr 37 35 30 37 127 95 35 33 30 54 121 91

tcp,udp.input 214 4.45 76 270 249 365 103 318 67 279 61 273
wakeup user thread 92 95 54 54 194 213 73 80 70 69 262 274

copyout/exitl 46 261 *32 *220 *222 *1028 21 631*27 *75 *208 *619
Receive Path Total 658 15291348 1123 1138 2455 456 1141 351 1042 1019 2086

Network Transit Time 51 1214 51 1214 51 1214 51 1214 51 1214 51 1214
Total 934 3574 613 2922 1864 5051 653 2899 633 2821 1804 4720

Table 4: For a library-based (SHM-IPF), kernel-based (Mach 2.5), and server-based (UN) protocol imple-
mentation on the DECstation 5000/200, this table shows the average TCP and UDP latencies on Ethernet
by component for the -ender and receiver. The minimum (I byte) and maximum (1460 byte.5 for TCP.
1472 bytes for UDP) unfragmented message sizes were used. Times are in microseconds. Entries marked
with asterisks denote protection boundary crossings. Times reported in this table are from an instrumented
version of the protocols, and reflect a small percentage error relative to an uninstrumented version.

is due to the different synchronization primitives used in each implementation. The server's synchronization
mechanisms are based on scheduling priority levels and locks. The priority levels, which are artifacts of the
code's kernel origins, are retained in the server because protocol processing must be synchronized with other
services, such as process management and filing, that also rely on priority levels. The priority level machinery
simulates hardware interrupt priorities using locks and condition variables, resulting in expensive priority
manipulation, and high contention for specific priority levels among independent services. In contrast, our
protocol library does not synchronize with other operating system services, and internally synchronizes using
less expensive locks. 4

Receive path

The next eight lines describe the receive path. The device intr/read component is the time to field an
interrupt from the network device. For the kernel and the server, the entire packet is also copied out of the
device into a wired kernel buffer. The netisr/packet filter component reflects the time to denmultiplex
the packet to the appropriate protocol stack. The kernel copyout component measures the time required
to deliver the packet to the destination protocol stack. This component does not apply to Mach 2.5 and is
shown as zero. For the library, the packet is copied from the network device into the protocol stack's address
space. For the server, the copy is from kernel memory, which has lower read latency than network device
memory [DEC 90].

The remaining components execute in user space for both the server-based and library-based implemen-

4
The server's synchronization mechanisms have been replaced with lighter-weight versions in later releases of

CMU's UNIX server.

11

tations. The sbuf/queue component measures the time required to package the incoming packet as an mbuf
chain and to queue the chain on the protocol stack's input queue. For Mach 2.5, this work occurs as part
of the netisr/packet filter processing. Although both are implemented at user-level, the overhead for
mbuf/queue manipulation is higher than in the library. Again, as with udp.output and tcp-output, this is
because the server uses a heavyweight synchronization mechanism.

The IP layer (ipintr) dequeues incoming IP packets, processes the IP header, and passes each packet up
to TCP or UDP. These layers then checksum the protocol header and data, queue the data on the destination
socket, and awaken any thread waiting for data to arrive on the socket.

The wakeup user thread component is the time required to pass control from the network protocol
thread to an application thread awaiting data. Again, synchronization overheads account for the difference
in times between the server and library.

Finally, the copyout/exit component reflects the time required to copy data from the mbuf chain into
the destination buffer specified by the caller, and leave the protocol. TCP's receive queue management,
and its support for urgent data [Postel 81] make this component larger than for UDP. For the server-based
implementation, this component involves sending an IPC reply message to the application and includes the
same number of redundant copies as the entry/copyin component.

5. Related work

Although there has been substantial work in the area of improving protocol performance, and in moving
pieces of protocol processing into user space, we are aware of no previous work that has attempted fully
to integrate application-level processing with other operating system services. An experimental protocol
library built on top of Mach 3.0 at the University of Washington [Thekkath et al. 93] implements a subset
of the socket interface for TCP, and provides for protected transmission between hosts that are on the same
physical Ethernet. As their system is intended to address the needs of application-specific protocols, theN
are not faithi'ul to the operating system interface.

The x-Kernel is an object-oriented protocol implementation environment that facilitates the construction
of new protocols. The r-Kernel currently runs as a dedicated protocol server and provides an RPC stub
library that implements the socket interface. Our system is complementary to the i-Kernel's, as ours
facilitates the integration of protocols into a complete operating system environment. Tschudin (Tschudin 91l1
advocates a protocol server into which protocol implementations can be dynamically loaded and unloaded.
We are not aware of an implementation of these ideas. Clark and Tennenhouse [Clark & Tennenhouse
90] assert that protocol layering is a desirable design but undesirable implementation technique. They
advocate two new techniques to improve performance: application-level framing, where higher-level protocols
determine the granularity of lower-level protocol processing, and integrated layer processing, where the
processing for all protocol layers is performed in one pass over the data. Our protocol decompositiou
strategy facilitates the application of these techniques.

6. Conclusions

It is possible to achieve both good performance and high flexibility in the networking domain. Careful
protocol decomposition places the responsibility for defining network abstractions with the operating system.
and of implementing the performance-critical components of those abstractions with the application. Our
work can be interpreted as part of a "RISC movement" in operating systems [Wilkes 92] where programming
interfaces are decoupled from the operating system implementation. This movement will make it possible
to experiment with newer and better programming implementations and interfaces while at the same time
retaining support for existing ones.

12

Acknowledgments

David Eckhardt, David Keppel, Gregor Kiczales, John Lamping, Ed Lazowska, Sue Lee, Keith Marzullo,
Dylan McNamee, Gail Murphy, Larry Peterson, and Chandu Thekkath provided valuable feedback on earlier
drafts of this paper. Jose Brustoloni helped us implement shared buffers correctly in the context of volatile
protocol sessions. Wayne Sawdon and Matt Zekauskas were early users of the system and suffered through
,ur mistakes with us. Masanobu Yuhara assisted with the integration of the packet filter. Mary Thompson

and Alessandro Forin helped with the integration of our libraries into Mach 3.0.

13

References

[Accetta et al. 86] Accetta, N1. J., Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. F., Tevazuan, Jr., A., and Young,
M. W. Mach: A New Kernel Foundation for Unix Development. In Proceedings of the 1986 Summer USENIX
Conference, pages 93-. 13, July 1986.

[Clark & Tennenhouse 90] Clark, D. D. and Tennenhouse, D. L. Architectural Considerations for a New Generation of Proto-
cols. In Proceedings of the SIGCOMM '90 Symposium, pages 200-208, September 1990.

[Clark et al. 91] Clark, D., Chapin, L., Cerf, V., Braden, R., and Hobby, R. Towards the Future Internet Architecture. Request
for Comments 1287, December 1991.

[Clark et al. 92] Clark, D. D., Shenker, S., and Zhang, L. Supporting Real-Time Applications in an Integrated Services Packet
Network: Architecture and Mechanism. In SIGCOMM '92 Conference Proceedings, pages 14-26, August 1992.

[Dean 92] Dean, R. W. A License-Free BSD 4.4 Single Server. In Open Software Foundation Symposium '92, Cambridge,
MA, February 1992.

[DEC 90] DEC Workstation System Engineering. DECstation 5000/200 KNO2 System Module Functional Specification
(Revision 1.3), August 1990.

[Felten 92] Felten, E. The Case for Application-Specific Communication Protocols. In Proceedings of Intel Supercomputer
Systems Division Technology Focus Conference, pages 171-181, 1992.

[Forin et al. 91] Forin, A., Golub, D. B., and Bershad, B. N. An I/O System for Mach 3.0. In Proceedings of the Second Usenix
Mach Workshop, pages 163-176, November 1991.

[Garfinkel & Spafford 91] Garfinkel, S. and Spafford, G. Practical Unix Security. O'Reilly and Associates, Inc., SebasLt(,,
CA, 1991.

[Gettys et al. 90] Gettys, J., Karlton, P., and McGregor, S. The X Window System, version 11. Software - Practice and
Experience, 20(S2):35-67, October 1990.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program. In Proceedings of the 1990
Summer USENIX Conference, pages 87-95, June 1990.

[Hutchinson &8 Peterson 91] Hutchinson, N. C. and Peterson, L. L. The x-kernel: An Architecture for Implementing Network
Protocols. IEEE Transactions on Software Engineering, 17(1):64-76, January 1991.

[Intel 90] Intel. 386 Programmer's Reference Manual. Intel, Nit. Prospect, IL, 1990.

[Jacobson 88] Jacobson, V. Congestion Avoidance and Control. In Proceedings of the SIGCOM.11 '88 Symposium on Com-
munications Architectures and Protocols, pages 314-329. ACM, August 1988.

[Jacobson et al. 92] Jacobson, V., Braden, R., and Borman, D. TCP Extensions for High-Performance. Request for Comments
1323, May 1992.

[Jolitz 92] Jolitz, W. F. Porting UNIX to the 386. Dr. Dobbs' Journal, January 1991 through July 1992.

[Kane 88] Kane, G. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[Leffler et al. 891 Leffler, S. J., McKusick, M., Karels, M., and Quarterman, J. The Design and Implementation of the 4.3BSD
UNIX Operating System. Addison-Wesley, 1989.

[Maeda & Bershad 92] Maeda, C. and Bershad, B. N. Networking Performance for Microkernels. In Proceedings of the Third
Workshop on Workstation Operating Systems, pages 154-159, April 1992.

[McC ne & Jacobson 93] McCanne, S. and Jacobson, V. The BSD Packet Filter: A New Architecture for User-level Packet
Capture. In Proceedings of the 1993 Winter USENIX Conference, pages 259-269, January 1993.

[Mogul et al. 87] Mogul, J. C., Rashid, R. F., and Accetta, M. J. The Packet Filter: An Efficient Mechanism for Usor-level
Network Code. In Proceedings of the 11th Symposium on Operating Systems Principles, pages 39-51. ACM.
November 1987.

[Postel 81] Postel, J. Transmission Control Protocol. Request for Comments 793, USC Information Sciences Institute. Seple u-
ber 1981.

[Rashid & Robertson 81] Rashid, R. F. and Robertson, G. G. Accent: A Communication Oriented Network Operating System
Kernel. In Proceedings of the 8th ACM Symposium on Operating Systems Principles, pages 6-1-75, December 1981.

(Stevens 90] Stevens, R. Unix Network Programming. Prentice-Hall, 1990.

[Thekkath et al. 93] Thekkath, C. A., Nguyen, T. D., Moy, E., and Lazowska, E. D. Implementing Network Protocols at User
Level. In Proceedings of SIGCOMM '93, September 1993.

[Tschudin 91] Tschudin, C. Flexible Protocol Stacks. In Proceedings of the SIGCOMAI '91 Symposium, pages 197-201.
September 1991.

[Voydock & Kent 83] Voydock, V. L. and Kent, S. T. Security Mecliansms in High-Level Network Protocols. A CM Computing
Surveys, 15(2):135-171, June 1983.

[Wilkes 92] Wilkes, M. The Case for a New Approach to Operating Systems for Personal Workstations. In Proceedings of the
Third Workshop on Workstation Operating V stems, pages 164-167, April 1992.

!Yuhara et al. 94] Yuhara, M., Bershad, B. N., Maeda, C., and Moss, J. E. B. Efficient Packet Demultiplexing for Miutiple
Endpoints and Large Messages. In Proceedings of the 1994 Winter USENIX Conference, January 199.1.

14

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

